
MJ-1(PHYSICS) 

Full marks-60 

Time-3 hours 

 

Answer the questions as per instruction given.  

The figures in the right hand margin indicate marks. 

Candidates are required to give answer in their own words as far as possible. 

Group-A 

(very short answer type questions) 

Answer all the following questions. 

1. Answer the following questions in a few words.    (5×1=5) 

(a) If 𝑟 is the position vector of a point then find the value of 𝑑𝑖𝑣 𝑟 . 

(b) If 𝐴&�⃗⃗� are irrotational. Prove that  𝐴 × �⃗⃗� is solenoidal. 

(c) Define stress and strain. 

(d) How is the viscosity of a liquid changes with the change in temperature? 

(e) Show that particle having zero rest mass always travels with velocity of light. 

2. Short answer type questions.       (2×5=10) 

(a) Prove that 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝜑 = 0 

(b) Why is a hollow cylinder stronger than a solid cylinder of the same mass, length and 

material? 

Group-B 

(Long- answer type questions) 

Answer any three questions                                               (15×3=45) 

3. (a) State and Prove Gauss’s divergence theorem                                                (10+5) 

(b) Prove that 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝐴 = 0 

4. (a) Find the expression for curl of a vector field in terms of Cartesian coordinates. (10+5)     

(b) Show that [�⃗� + �⃗⃗�, �⃗⃗� + 𝑐,⃗⃗⃗ 𝑐 + �⃗�] = 2[ 𝑎⃗⃗⃗ ⃗ 𝑏⃗⃗ ⃗ 𝑐⃗⃗⃗]. 

5. A light beam of rectangular cross-section is resting at its ends on two knife edges    (15) 

And is loaded at its middle. Obtain an expression for the depression produced. How will 

you determine Young’s modulus of elasticity of the beam using it. 

6. Derive Poiseuille’s formula for capillary flow of liquid.                                                      (15)  

7. Obtain the formula for the variation of mass with velocity.    (15) 

 

 

 

 



Answer: 

1. (a) The position vector 𝑟 is written in terms of its Cartesian components as 𝑟 = 𝑥𝑖̂ + 𝑦𝑗̂ +

𝑧�̂� 

Now  𝑑𝑖𝑣 𝑟 = ∇⃗⃗⃗. 𝑟 = (𝑖̂
𝜕

𝜕𝑥
 +𝑗̂

𝜕

𝜕𝑦
+ �̂�

𝜕

𝜕𝑧
). (𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧�̂�) =

𝜕𝑥

𝜕𝑥
+

𝜕𝑦

𝜕𝑦
+

𝜕𝑧

𝜕𝑧
 =1+1+1=3 

(b) We know 𝑑𝑖𝑣 (𝐴 × �⃗⃗�) = �⃗⃗�. 𝑐𝑢𝑟𝑙 𝐴 − 𝐴. 𝑐𝑢𝑟𝑙 �⃗⃗� 

If 𝐴&�⃗⃗�are irrotational, then 𝑐𝑢𝑟𝑙 𝐴 = 0 and 𝑐𝑢𝑟𝑙 �⃗⃗� = 0 

𝑑𝑖𝑣 (𝐴 × �⃗⃗�) = 0 Hence 𝐴 × �⃗⃗� is solenoidal. 

(c)  The restoring force per unit area of the body is called stress. 

  The ratio of the change in the configuration ( i.e. shape, length, or volume ) to the 

original configuration of the body is called strain. 

(d) Increases with the decrease in temperature and vice-versa. 

(e) We know 𝑚 =
𝑚0

√1−
𝑣2

𝑐2

 

Or √1 −
𝑣2

𝑐2 = 
𝑚0

𝑚
 in this case 𝑚0=0 (rest mass) 

√1 −
𝑣2

𝑐2 = 0or1 −
𝑣2

𝑐2 =0 or 
𝑣2

𝑐2 = 1 

Or 𝑣 = 𝑐 

2. (a) We have ∇⃗⃗⃗𝜑= (𝑖̂
𝜕

𝜕𝑥
 +𝑗̂

𝜕

𝜕𝑦
+ �̂�

𝜕

𝜕𝑧
)𝜑 =𝑖̂

𝜕𝜑

𝜕𝑥
 +𝑗̂

𝜕𝜑

𝜕𝑦
+ �̂�

𝜕𝜑

𝜕𝑧
 

Now ∇⃗⃗⃗ × ∇𝜑⃗⃗⃗⃗ ⃗⃗  = ∇⃗⃗⃗ ×(𝑖̂
𝜕𝜑

𝜕𝑥
 +𝑗̂

𝜕𝜑

𝜕𝑦
+ �̂�

𝜕𝜑

𝜕𝑧
) 

 =||

𝑖̂
𝜕

𝜕𝑥

𝑗̂
𝜕

𝜕𝑦

𝜕𝜑

𝜕𝑥

𝜕𝜑

𝜕𝑦

�̂�
𝜕

𝜕𝑧
𝜕𝜑

𝜕𝑧

|| = 𝑖̂ (
𝜕2𝜑

𝜕𝑦𝜕𝑧
−

𝜕2𝜑

𝜕𝑧𝜕𝑦
) + 𝑗̂ (

𝜕2𝜑

𝜕𝑧𝜕𝑥
−

𝜕2𝜑

𝜕𝑥𝜕𝑧
) + �̂� (

𝜕2𝜑

𝜕𝑥𝜕𝑦
−

𝜕2𝜑

𝜕𝑦𝜕𝑥
) 

=∇⃗⃗⃗ × ∇𝜑⃗⃗⃗⃗ ⃗⃗ = 0 

Provided 𝜑 is a perfect differential 

So that 
𝜕2𝜑

𝜕𝑦𝜕𝑧
=

𝜕2𝜑

𝜕𝑧𝜕𝑦
 and so on  

Thus 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 𝜑 = 0 

(b) Consider two cylinders one is hollow and another a solid of same length, mass and 

material. 

Let   𝑙 = length of each cylinder 

  𝜌 = density of material of both cylinders 

  𝑟 = radius of solid cylinder 

  𝑟1&𝑟2 = inner and outer radii of hollow cylinder 

The torsional rigidity of solid cylinder  

     𝑐 =
𝜋𝜂𝑟4

2𝑙
 

And torsional rigidity of hollow cylinder  

     𝑐′ =
𝜋𝜂

2𝑙
(𝑟2

4 − 𝑟1
4) 



𝑖. 𝑒.
𝑐′

𝑐
=

𝑟2
4−𝑟1

4

𝑟4  =
(𝑟2

2−𝑟1
2)(𝑟2

2+𝑟1
2)

𝑟4  

As the cylinders are of the same length & mass. 

𝜋(𝑟2
2 − 𝑟1

2)𝑙 𝜌 = 𝜋𝑟2𝑙𝜌 

(𝑟2
2 − 𝑟1

2)= 𝑟2 

𝑐′

𝑐
= =

(𝑟2
2−𝑟1

2)(𝑟2
2+𝑟1

2)

𝑟4 =
(𝑟2

2+𝑟1
2)

𝑟2 > 1 

 

i.e.𝑐′ > 𝑐 

Torsional rigidity of hollow cylinder is greater than that of the solid cylinder. Hence 

the hollow cylinder is stronger than solid cylinder. 

3. (a) Statement:-“According to this theorem the surface integral of a vector field 𝐴 over a 

closed surface ′𝑠′ is equal to the volume integral of the divergence of a vector field 𝐴 

over the volume 𝑉 enclosed by the surface” 

 

 

Proof :-  

 

 

 
Consider a surface ′𝑠′ which encloses a volume V . Let us divide this volume  into a large 

no of elementary volumes in the form of parallelepiped. Consider one such 

parallelepiped EFGHPQRS having volume 𝑑𝑉 and sides  𝑑𝑧 . consider a vector 𝐴 at the 

centre ‘c’ of a parallelepiped. Let 𝐴𝑥,𝐴𝑦  &𝐴𝑧 = components of 𝐴 at c along three axes. 

The value of 𝑥 − component of 𝐴 at the centre of face EFGH = 𝐴𝑥 −
𝜕𝐴𝑥

𝜕𝑥
.

𝑑𝑥

2
 

And that at the centre of face PQRS = 𝐴𝑥 +
𝜕𝐴𝑥

𝜕𝑥
.

𝑑𝑥

2
 

Since the volume element is infinitesimally small, this component of vector may be 

considered all over the face. Flux entering the face EFGH = (𝐴𝑥 −
𝜕𝐴𝑥

𝜕𝑥
.

𝑑𝑥

2
) 𝑑𝑦 𝑑𝑧 

Similarly flux leaving the face PQRS = (𝐴𝑥 +
𝜕𝐴𝑥

𝜕𝑥
.

𝑑𝑥

2
) 𝑑𝑦 𝑑𝑧 

Thus net flux leaving the parallelepiped in the   𝑥 − direction  



= [(𝐴𝑥 +
𝜕𝐴𝑥

𝜕𝑥
.

𝑑𝑥

2
) − (𝐴𝑥 −

𝜕𝐴𝑥

𝜕𝑥
.

𝑑𝑥

2
)] 𝑑𝑦 𝑑𝑧 = 

𝜕𝐴𝑥

𝜕𝑥
 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Similarly, the net flux leaving the parallelepiped in the 𝑦 & 𝑧 − directions are 
𝜕𝐴𝑦

𝜕𝑦
 𝑑𝑥 𝑑𝑦 𝑑𝑧and

𝜕𝐴𝑧

𝜕𝑧
 𝑑𝑥 𝑑𝑦 𝑑𝑧 

 Total flux of 𝐴 leaving from the parallelepiped  

𝐴. 𝑑𝑠⃗⃗⃗⃗⃗ =  (
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
) 𝑑𝑥 𝑑𝑦 𝑑𝑧 = (∇⃗⃗⃗. 𝐴)𝑑𝑉 where 𝑑𝑖𝑣 𝐴 =

𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
 

and𝑑𝑉 = 𝑑𝑥 𝑑𝑦 𝑑𝑧 

Taking the sum of fluxes through all the elementary parallelepipeds constituting the 

volume 𝑉 of the surface 𝑆 we have 

Proved 

(b) 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝐴 = ∇ .⃗⃗⃗⃗⃗ (∇⃗⃗⃗ × 𝐴) 

=∇ .⃗⃗⃗⃗⃗ |

𝑖̂
𝜕

𝜕𝑥

𝑗̂
𝜕

𝜕𝑦

𝐴𝑥 𝐴𝑦

�̂�
𝜕

𝜕𝑧

𝐴𝑧

| = (𝑖̂
𝜕

𝜕𝑥
 + 𝑗̂

𝜕

𝜕𝑦
+ �̂�

𝜕

𝜕𝑧
) . [𝑖̂ (

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) + 𝑗̂ (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) + �̂� (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)] 

∇ .⃗⃗⃗⃗⃗ (∇⃗⃗⃗ × 𝐴) =
𝜕

𝜕𝑥
(

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) +

𝜕

𝜕𝑦
(

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) +

𝜕

𝜕𝑧
(

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) 

 

=
𝜕2𝐴𝑧

𝜕𝑥𝜕𝑦
−

𝜕2𝐴𝑦

𝜕𝑥𝜕𝑧
+

𝜕2𝐴𝑥

𝜕𝑦𝜕𝑧
−

𝜕2𝐴𝑧

𝜕𝑦𝜕𝑥
+

𝜕2𝐴𝑦

𝜕𝑧𝜕𝑥
−

𝜕2𝐴𝑥

𝜕𝑧𝜕𝑦
 

=0 assuming that 𝐴 is perfect differential. 

Thus 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝐴 = 0. 

4. (a) 

 
Consider an infinitesimal rectangular area ABCD of sides 𝑑𝑥 𝑎𝑛𝑑 𝑑𝑦. 

Let 𝐴𝑥 , 𝐴𝑦 𝑎𝑛𝑑 𝐴𝑧  components of 𝐴 in the direction of 𝑋, 𝑌 𝑎𝑛𝑑 𝑍  axes at point P. 

 If the rate of change of 𝐴𝑥 along 𝑌 − 𝑎𝑥𝑖𝑠 𝑖𝑠 
𝜕𝐴𝑥

𝜕𝑦
,  

then the value of 𝐴𝑥 at the centre of AB 

= 𝐴𝑥 −
𝜕𝐴𝑥

𝜕𝑦
.
𝑑𝑦

2
 

 

Similarly the value of 𝐴𝑥   at the centre of CD 

                                                                   = 𝐴𝑥 +
𝜕𝐴𝑥

𝜕𝑦
.

𝑑𝑦

2
  



Again the value of 𝐴𝑦  at the centre of BC 

= 𝐴𝑦 +
𝜕𝐴𝑦

𝜕𝑥
.
𝑑𝑥

2
 

And the value of 𝐴𝑦  at the centre of DA 

= 𝐴𝑦 −
𝜕𝐴𝑦

𝜕𝑥
.
𝑑𝑥

2
 

Therefore the line integral along the boundary ABCD 

=(𝐴𝑥 −
𝜕𝐴𝑥

𝜕𝑦
.

𝑑𝑦

2
) 𝑑𝑥 + (𝐴𝑦 +

𝜕𝐴𝑦

𝜕𝑥
.

𝑑𝑥

2
) 𝑑𝑦 − (𝐴𝑥 +

𝜕𝐴𝑥

𝜕𝑦
.

𝑑𝑦

2
) 𝑑𝑥 − (𝐴𝑦 −

𝜕𝐴𝑦

𝜕𝑥
.

𝑑𝑥

2
) 𝑑𝑦 

= (
𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) 𝑑𝑥 𝑑𝑦 

Now the line integral per unit area is (
𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
). This is by definition, is the magnitude 

of the component of 𝑐𝑢𝑟𝑙 𝐴 taken along 𝑍 − 𝑎𝑥𝑖𝑠.  

i.e. (𝑐𝑢𝑟𝑙 𝐴)
𝑧

= (
𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) 

similarly the magnitudes of 𝑥 𝑎𝑛𝑑 𝑦 components of 𝑐𝑢𝑟𝑙 𝐴 are 

 

(𝑐𝑢𝑟𝑙 𝐴)
𝑥

= (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) and 

(𝑐𝑢𝑟𝑙 𝐴)
𝑦

= (
𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
)  

𝑖. 𝑒. 𝑐𝑢𝑟𝑙 𝐴 =  (
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
) 𝑖̂ + (

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
) 𝑗̂ + (

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
) �̂�  

This is required expression. 

 

(b) (�⃗� + �⃗⃗�). [(�⃗⃗� + 𝑐) × (𝑐 + �⃗�)] = (�⃗� + �⃗⃗�). [�⃗⃗� × 𝑐 + 𝑐 × 𝑐 + �⃗⃗� × �⃗� + 𝑐 × �⃗�] 

    =(�⃗� + �⃗⃗�). [�⃗⃗� × 𝑐 + �⃗⃗� × �⃗� + 𝑐 × �⃗�]        as 𝑐 × 𝑐 = 0 

 =�⃗�. (�⃗⃗� × 𝑐) + �⃗�. (�⃗⃗� × �⃗�) + �⃗�. (𝑐 × �⃗�) + �⃗⃗�. (�⃗⃗� × 𝑐) + �⃗⃗�. (�⃗⃗� × �⃗�) + �⃗⃗�. (𝑐 × �⃗�) 

  =[�⃗� �⃗⃗� 𝑐] + 0 + 0 + 0 + 0 + [�⃗� �⃗⃗� 𝑐] 

                     =2[�⃗� �⃗⃗� 𝑐] 

Proved 

5. A beam OA is considered. The beam is supported at ends by knife edges 𝑘1 𝑎𝑛𝑑 𝑘2 and is 

loaded at middle. 

 

Let 𝑙 = length of beam between two knife edges. 

     𝑤 =Load applied at the middle. 

     
𝑤

2
=Upward reaction at each knife edge. 

Basic assumptions  

1. The beam is light and hence depression due to its own weight is negligible. 

2. The length of beam is large as compare to its cross-section. So that shearing stress is 

small. 

3. The beam bends within the elastic limit. 



 A cross-section of the beam at point P at distance 𝑥 from O is considered. 

Restoring couple set up at the point P =
𝑌𝐼𝑔

𝑅
, where 𝑌 = Young’s modulus of elasticity, 

𝐼𝑔 =Geometrical moment of inertia, and 𝑅 = Radius of curvature. 

Bending couple at point P= 𝑤 (
𝑙

2
− 𝑥) −

𝑤

2
(𝑙 − 𝑥) 

                                       = 𝑤 [
𝑙

2
− 𝑥 −

𝑙

2
+

𝑥

2
] = −

𝑤𝑥

2
 

At equilibrium 
𝑌𝐼𝑔

𝑅
= −

𝑤𝑥

2
 , or 

1

𝑅
= −

𝑤

2𝑌𝐼𝑔
𝑥 

 

But we know from calculus 
1

𝑅
=

𝑑2𝑦

𝑑𝑥2  , so 
𝑑2𝑦

𝑑𝑥2 = −
𝑤

2𝑌𝐼𝑔
𝑥   

Or  
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
) = −

𝑤

2𝑌𝐼𝑔
𝑥 

Or 𝑑 (
𝑑𝑦

𝑑𝑥
) = −

𝑤

2𝑌𝐼𝑔
𝑥 𝑑𝑥  

Integrating we get , 
𝑑𝑦

𝑑𝑥
= −

𝑤

2𝑌𝐼𝑔

𝑥2

2
+ 𝑐1,              where 𝑐1 =integration constant ,  

At 𝑥 =
𝑙

2
 ,

𝑑𝑦

𝑑𝑥
= 0,       so      0 = −

𝑤

4𝑌𝐼𝑔

𝑙2

4
+ 𝑐1 ,        or   𝑐1 =

𝑤𝑙2

16𝑌𝐼𝑔
 

 Putting the value of 𝑐1 in the above equation 

𝑑𝑦

𝑑𝑥
= −

𝑤𝑥2

4𝑌𝐼𝑔
+

𝑤𝑙2

16𝑌𝐼𝑔
 

𝑑𝑦 = [−
𝑤𝑥2

4𝑌𝐼𝑔
+

𝑤𝑙2

16𝑌𝐼𝑔
] 𝑑𝑥 

Again integrating we get 

𝑦 = −
𝑤

4𝑌𝐼𝑔

𝑥3

3
+

𝑤𝑙2

16𝑌𝐼𝑔
. 𝑥 + 𝑐2  , where 𝑐2 =integration constant , at 𝑥 = 0, 𝑦 = 0 & 𝑐2 = 0 

𝑦 = −
𝑤

4𝑌𝐼𝑔

𝑥3

3
+

𝑤𝑙2

16𝑌𝐼𝑔
. 𝑥 

This gives the depression of the beam at distance 𝑥 from end O. for depression at middle point 

 i.e at 𝑥 = 𝑙
2⁄   ,Let 𝑦 = 𝛿 

𝛿 = −
𝑤

4𝑌𝐼𝑔

𝑙3

3 × 8
+

𝑤𝑙2

16𝑌𝐼𝑔
.

𝑙

2
 

 

     =
𝑤𝑙3

32𝑌𝐼𝑔
[1 −

1

3
] =

𝑤𝑙3

48𝑌𝐼𝑔
 

 



𝛿 =
𝑤𝑙3

48𝑌𝐼𝑔
 

This is the required depression at the middle point of the beam. 

Now Young’s modulus of elasticity is given by 

𝑌 =
𝑤𝑙3

48𝛿𝐼𝑔
  

For rectangular cross section of thickness 𝑑 & 𝑏𝑟𝑒𝑎𝑑𝑡ℎ 𝑏 

Area    𝑎 = 𝑏𝑑,   𝐾2 =
𝑑2

12
 ,and 𝐼𝑔 = 𝑎𝐾2 =

𝑏𝑑3

12
 

 

𝑌 =
𝑤𝑙3

48𝛿𝑏
𝑑3

12

 

𝑌 =
𝑤𝑙3

4𝛿𝑏𝑑3
 

 

 

 

 

6.  

 

 

 
Consider a capillary tube of length 𝑙 and radius  . Let a liquid be maintained to flow 

through it. 

It is assumed that  

(i) The tube is horizontal and so acceleration due to gravity is neglected. 

(ii) The motion is stream line and all the stream line flows are parallel to the axis 

of tube. 

(iii) The velocity of liquid along the wall is zero and is maximum along the axis of 

the tube. 

A cylindrical layer of the liquid of radius 𝑥 and thickness 𝑑𝑥 is considered. 

 The viscous force acting on the layer in back ward direction is given by  

𝐹 = −𝜂𝐴
𝑑𝑣

𝑑𝑥
where

𝑑𝑣

𝑑𝑥
 = velocity gradient. 

                The forward push due to the difference of pressure P on the two sides of the 

cylinder of radius 𝑥 is given by = 𝑃𝜋𝑥2 . for steady flow  



−𝜂𝐴
𝑑𝑣

𝑑𝑥
= 𝑃𝜋𝑥2,      but 𝐴 = 2𝜋𝑥𝑙,            𝑃𝜋𝑥2 = −𝜂2𝜋𝑥𝑙

𝑑𝑣

𝑑𝑥
 

Or = −
𝑃

2𝜂𝑙
𝑥𝑑𝑥 , integrating we get  𝑣 = −

𝑃

2𝜂𝑙

𝑥2

2
+ 𝑐,     where c= integration constant 

When 𝑥 = 𝑟, 𝑣 = 0,     𝑐 =
𝑃

4𝜂𝑙
𝑟2 

So 𝑣 =
𝑃

4𝜂𝑙
(𝑟2 − 𝑥2) 

This is the equation of parabola and gives the velocity of flow at distance 𝑥 from the axis of 

the tube. 

The area of cross-section of the cylindrical layer of radius 𝑥 and thickness 𝑑𝑥 is given by 

= 2𝜋𝑥𝑑𝑥 

Volume of liquid flowing per second through this area 𝑑𝑉 = 𝑣2𝜋𝑥𝑑𝑥 

Hence volume of the liquid flowing out per second through whole tube is given by 

∫ 𝑑𝑉 = ∫ 𝑣2𝜋𝑥𝑑𝑥
𝑟

0

 

𝑉 = ∫
𝑃

4𝜂𝑙
(𝑟2 − 𝑥2)

𝑟

0

2𝜋𝑥𝑑𝑥 

=
𝜋𝑃

2𝜂𝑙
∫ (𝑟2𝑥 − 𝑥3)𝑑𝑥

𝑟

0

 

    =
𝜋𝑃

2𝜂𝑙
(

𝑟4

2
−

𝑟4

4
) 

    𝑉 =
𝜋𝑃𝑟4

8𝜂𝑙
 

This is Poiseuille’s formula. 

 

7. According to relativistic idea the mass of a body varies with velocity. It increases with 

increase of velocity according to relation 

 𝑚 =
𝑚0

√(1−
𝑣2

𝑐2)

 ,      where 𝑚0 =rest mass of the body ,   𝑐 =speed of light,  

  𝑣 =velocity of the body. 

 

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 

 



 

 

 Let S & S’ be two inertial frames of references, and 𝑣 the uniform velocity of S’ 

with respect to S along 𝑥 − 𝑎𝑥𝑖𝑠. 

Let two particles of masses 𝑚1𝑎𝑛𝑑 𝑚2  moving with velocities 𝑢′ 𝑎𝑛𝑑 − 𝑢′ in the frame S’ 

approaches each other. 

The velocities of the particles as seen from the frame S will however be different and are given 

by the relativistic addition of velocities as,     𝑢1 =
𝑢′+𝑣

1+
𝑢′𝑣

𝑐2

         and       𝑢2 =
−𝑢′+𝑣

1−
𝑢′𝑣

𝑐2

    

At the instant of collision, the two particles are momentarily at rest with respect to the frame S’, 

but as seen from the frame S, they are still moving with velocity 𝑣 . 

Since the total momentum of the two particles is conserved, we have 

𝑚1𝑢1 + 𝑚2𝑢2 = (𝑚1 + 𝑚2)𝑣 

Or  𝑚1 (
𝑢′+𝑣

1+
𝑢′𝑣

𝑐2

) + 𝑚2 (
−𝑢′+𝑣

1−
𝑢′𝑣

𝑐2

) = (𝑚1 + 𝑚2)𝑣 

Or 𝑚1 (
𝑢′+𝑣

1+
𝑢′𝑣

𝑐2

− 𝑣) = 𝑚2 (𝑣 −
−𝑢′+𝑣

1−
𝑢′𝑣

𝑐2

) 

Or 𝑚1 (
𝑢′−

𝑢′𝑣

𝑐2

1+
𝑢′𝑣

𝑐2

) = 𝑚2 (
𝑢′−

𝑢′𝑣

𝑐2

1−
𝑢′𝑣

𝑐2

) 

Or 
𝑚1

𝑚2
=

1+
𝑢′𝑣

𝑐2

1−
𝑢′𝑣

𝑐2

  

From the above equations  



𝑢1
2 = (

𝑢′+𝑣

1+
𝑢′𝑣

𝑐2

)

2

,    or 1 −
𝑢1

2

𝑐2 = 1 −
1

𝑐2  (
𝑢′+𝑣

1+
𝑢′𝑣

𝑐2

)

2

=
(1+

𝑢′𝑣

𝑐2 )
2

−(
𝑢′+𝑣

𝑐
)

2

(1+
𝑢′𝑣

𝑐2 )
2  

Or 1 −
𝑢1

2

𝑐2 =
1+

𝑢′2𝑣2

𝑐4  + 
2𝑢′𝑣

𝑐2  − 
𝑢′2

𝑐2  − 
𝑣2

𝑐2− 
2𝑢′𝑣

𝑐2  

(1+
𝑢′𝑣

𝑐2 )
2  

1 −
𝑢1

2

𝑐2
=

𝑢′2

𝑐2 (
𝑣2

𝑐2 − 1) − 1 (
𝑣2

𝑐2 − 1)

(1 +
𝑢′𝑣

𝑐2 )
2 =

(1 −
𝑢′2

𝑐2 ) (1 −
𝑣2

𝑐2)

(1 +
𝑢′𝑣

𝑐2 )
2  

1 +
𝑢′𝑣

𝑐2
= √

(1 −
𝑢′2

𝑐2 ) (1 −
𝑣2

𝑐2)

(1 −
𝑢1

2

𝑐2)
 

Similarly  

 1 −
𝑢′𝑣

𝑐2 = √
(1−

𝑢′2

𝑐2 )(1−
𝑣2

𝑐2)

(1−
𝑢2

2

𝑐2 )

 

So   
𝑚1

𝑚2
=

√1−
𝑢2

2

𝑐2

√1−
𝑢1

2

𝑐2

 

𝑚1 √1 −
𝑢1

2

𝑐2 = 𝑚2 √1 −
𝑢2

2

𝑐2 = 𝑐 ( 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

When 𝑢1 = 0, 𝑚1 = 𝑚0 = 𝑟𝑒𝑠𝑡 𝑚𝑎𝑠𝑠 

𝑚2 √1 −
𝑢2

2

𝑐2  =𝑚0 = 𝑐 

Again when  𝑢2 = 0, 𝑚2 = 𝑚0 = 𝑟𝑒𝑠𝑡 𝑚𝑎𝑠𝑠 

𝑚1 
√1 −

𝑢1
2

𝑐2
= 𝑚0 = 𝑐 

in general , if a particle of mass 𝑚 moving with velocity 𝑣 , we have  

𝑚√1 −
𝑣2

𝑐2 = 𝑚0             Or  𝑚 =
𝑚0

√1−
𝑣2

𝑐2

 

This is required relation. 

 


